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INHOMOGENEITY PROBLEM REVISITED VIA THE
MODULUS PERTURBATION APPROACH

H. Fan, L. M. Keer and T. Mugra
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, U.S.A.
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Abstract——The present paper reconsiders the inhomogeneity problem via an elastic modulus per-
turbation approach. By using the eigenstrain concept. the inhomogencity problem is converted to
a series of inclusion problems in the present modulus perturbation procedure. A homogencous state
is chosen as reference stite or the Oth order solution. Some extensions of the modulus perturbation
approich by example are also discussed in the paper.

L. INTRODUCTION

The investigation of the ficld of an inhomogenceity embedded in a matrix has long been an
attractive subject in micromechanics and the mechanics of composites. However, the defi-
nitions of the inclusion and the inhomogeneity have not been unified. In the present
investigation the terminology of Mura (1982) for characterizing both inclusion and inhomo-
geneity will be adopted. The inclusion is defined as a subdomain having cigenstrains
prescribed, while the inhomogeneity is defined as a subdomain with a prescribed modulus
that is different from the remainder of the material. It is noted that the inhomogencity can
be equivalent to an inclusion with a proper eigenstrain that depends on the external loading
and geometry of the body. Unlortunately, the equivalent eigenstrain of an inhomogeneity
is too diflicult to be obtained for configurations other than that of a single cllipsoidal
inhomogeneity embedded in an infinite matrix, as solved by Eshelby (1957). Besides the
Eshelby solution, there are only a few other configurations that have analytical solutions.
For example, the interaction of two inhomogeneities in an infinite matrix was studied by
Moschovidis and Mura (1975), and a semi-spherical inhomogeneity near a free surface has
recently been provided by Tsuchida er al. (1990). Generally, solutions of this type are too
complicited to be used in further applications.

As another branch of micromechanics, the study of the inclusion problem with pre-
scribed eigenstrains has attracted many researchers. Among others, Sankaran and Laird
(1976) developed a cuboidal inclusion solution, and Sco and Mura (1979) solved the case
of an inclusion near the free surfuce of a half-space. A direct engincering application of the
inclusion solution is found in metallurgical research, such as in studies of phase trans-
formation, where the eigenstrain is known. Also, it is expected that the inclusion solutions
may be used for the study of inhomogencities by the equivalent inclusion method (Mura,
1982, Section 22).

In the present paper, the inhomogeneity problem is formulated via the elastic modulus
perturbation approach. It is noted that this procedure (Section 2) turns the inhomogeneity
problem to an inclusion problem. The Oth order solution is obtained in a properly selected
configuration, say a homogencous medium, which is chosen to be as simple as possible.
The higher order solutions n 2 | show the gencral properties of an inclusion problem. The
corresponding equivalent cigenstrains for # 2 { are obtained from the solutions of previous
orders. Through the present perturbation approach, the existing inclusion solutions (Mura,
1982) will have found a new class of applications, which brings additional importance to
these solutions. Meanwhile, as it will be pointed out, the perturbation procedure itself,
altthough greatly simplifying the inhomogeneity problem, restricts the solution somewhat.
It is casy to sce that the difference between Coy, (matrix modulus) and CP, (inhomogeneity
modulus) is required to be small compared to C,, itself. Other remarks on the advantages
and disadvantages of the procedure will be made in the last section of the paper.
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A similar technique had been used by Walpole (1967) to treat an inclusion in an aniso-
tropic medium. He used an isotropic solution as the reference state, the Oth order solution,
which was obtained by Eshelby (1957). Other related works. such as Gao (1991), will be
reviewed in the following sections.

2. PERTURBATION PROCEDURE

" Consider an elastic medium D with elastic modulus C°, in which there is a subdomain
Q contained in D with a different modulus C*. We call  the domain of the inhomogeneity
and D-Q as the domain of the matrix. One may write Hooke's law in the matrix as,

g, = C,/“Ek/ in D-Q (la)

)
and in the inhomogeneity as.
g,=Cly in Q. (1b)
The perturbation is carried out as follows:
0, = (Clu+/Claden in Q, )
where the parameter f may be chosen by the ratio:

f=(C*=CYH/C

where C, and C* are the representative components in C)y, and C/,, respectively.
All the stress and strain ficlds are expanded as follows :

oy, =al+fa,+0(fD, &, =& +fe,+0(f?). (3a, 3b)

By identifying terms with the same power of £, the first two order approximations in
Quare:

o) = Cluter (4a)
O(f), st order solution:
o = Clutd+Cluta. (4b)
In general, one has:
O(f™). nth order solution, n > | :
), = Clutr+Clut ' (4c)
On the other hand, in D-Q,
o, = Clutn, n=0. )

By using the eigenstrain concept (Mura, 1982), eqn (4b) may be rewritten as:
Uil/ = Cﬁu(ﬂk'/—slf)‘ (6)

where &, is the so-called eigenstrain, which is obtained by equating (4b) to (6),
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e = _(CO)—I(CI)GO‘ 7N

In terms of the eigenstrain and Green's function of the corresponding domain, the first
order approximation is expressed as,

Ui (x) = LC,?».,.EL'..(K')GUJ(X. x)dx’ (8a)

1 . é W, © , .
Eilj(x) = EJ; CI?I»mE.I..,.(X')(@‘—v Gy (X.X")+ oc Gi(x, x )) (‘ix , (8b)
X, X,

where ( ), = d( )/éx..

Green's function G;;(x. x") in the above equations is the displacement in the x; direction
at point x when the unit point force is acting in the direction x; at x". The integrals in eqn
(8b) do not exist in the sense of Riemann integrals. A special treatment is needed (see
Appendix) when a numerical calculation is carried out.

[t is seen that the higher order approximations can be performed in the same fashion.
Although in principle the higher order (n 2 1) can be obtained, most practical applications
only need the first order modification. [n the following section, we will mention only the
first order formulation most of the time.

Combining eqn (7) with (Ra), the perturbation of the displacement equation (8a) may
be rewritten as:

“l’l (x) = - _[] j}mn’:gm(x’ )Gt}.l(x' x') dx’ (93)

£h(x) = —~| C it ')<£G (x,x)+ E—G (x,x") Jdx’ (9b)
i f - 2 o kimntmalX l‘),\f ikl X, X D.r‘ J XA ..

!

Expression (9a) may be obtained by omitting the eigenstrain concept (Gao, 1991). In
order to connect the inhomogeneity and inclusion problems, the present analysis shall
mention and calculate the eigenstrain as necessary in the following sections.

3. EXAMPLES

In order to have a quantitative sense of the accuracy of the perturbation approximation,
the Eshelby (1957) inclusion solution is re-examined. An infinitely long solid cylindrical
inhomogeneity is embedded in an isotropic infinite matrix. The far field is loaded by pure
shear stress, a},. By using the equivalent inclusion concept (Mura, 1982, Chapter 11), the
disturbance due to the inhomogeneity can be expressed as:

g, = C:‘;kl‘:kl = C,u,u(ck/—ﬁk‘/)- (10)

where g, and &, are the disturbed fields, and the e is the so-called eigenstrain.
From the Eshelby solution, the stresses in the inhomogeneity are known to be uniform.
The only non-zero component under shear is a,,. The exact solution of the eigenstrain is:

0
E'Ill(nnclb = '2." W (A“)’l‘:l: R (l l)
(Ap)S 212 +1

where Ay = p* — . The constant S,,;, for the eliipsoidal inclusion was given by Eshelby
(1957).

On the other hand, an approximated solution can be obtained from the perturbation
procedure given in Scection 2 above. The Oth order solution is taken as the uniform shear
6%, = 2uel,. In the homogeneity, the first order stress and strain are related as:
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o €l g%,
ol | = C%el, |[H(C*=C%| &, |. (12)
U:: 5:: 5(1)1
where
I -y v | —v* v 0
[=2v 1—2v F—2v* =2
CO = 2[( v l—v 0 N C‘ = 2“* v¥ | —v* (13)
[=2v [ =2v [ —2v* | —2v*
0 0 | 0 0 |
and
l—v —v 0
0y -1 !
(c? =51 v l—v 0
u
0 0 |

For simplicity, v = v* is taken in the following formulation. The cigenstrain for the first
order is obtained by substituting the above formulae into eqn (7)

L oy
i Au 0 :
C}’ = - = ELay |- (I4)
2 P 22
N L0
L2 £,

For the case of pure shear, eqn (14) is the first term of the Taylor expansion of eqn (11).
By substituting the eigenstrain into eqn (8b), the first order correction on the strain is
obtained. Having noted that the integral (8b) with a uniform cigenstrain has been carried
out by Eshelby (1957), ¢/ can be expressed in terms of the so-called Eshelby tensor S as:

€1y = 28121280 = =282 — ¢l (15)

In most cases, the Ist order solution provides a good approximation. The error of the
present approximation can be obtained by comparing (15) with the exact Eshelby solution.

-_ A { E“» A {
Eldenaen = 28121257 ’"(*;;'2"":'"' =281 'f'ﬁl: T e
2(A1)8 51+ 1 u Ap

With the Eshelby tensor the discussion can be extended as follows. The next order
approximation s read as:

£ = A-‘fl:w = ZS,‘,aéﬁ)Af-{a?‘... .
° /7S tu)ou 0t

By following the same procedure, the nth order eigenstrain is obtained as:
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. ApY'A
e".:=—(—zs,m “) e, (16)
u u

where n > |.
It is seen that the sum of all the orders of eigenstrains converges to the exact solution,
eqn (11). in the range of convergence, i.e.

(exact) (l7)

' >g
™
-
td
Ragkl
=
TN
|
(0]
g
!-:
"
=
S—r
Il
™
—%
(¥

A numerical range of Ag can be reached if the shape of the inhomogeneity and Poisson’s
ratio are given. For a circular cylinder with v = 0.25, the above condition is read as:

An < i,

which will guarantee that the serics (17) will converge to the exact solution (11).

Information can be derived from this example concerning the error of the perturbation
approximation at the first and higher orders. Usually, only the first order can be easily
obtained, while the higher order approximations become more complicated. It is clear that
the perturbation solution does not show the extra complexity when the inhomogeneity is
not of cliptical shape. The effect of the shape on the stress and strain ficlds may be discussed
by using this approximation scheme. [t is noted that this benefit, gained through the
perturbation procedure, is at the expense of the restriction that [AC| = |C* —C| is small,

As another example without a closed form solution, consider an inhomogencity near
a free surface, as shown in Fig. |, where the inhomogeneity has a radius of | and the
distance between free surface and the center of the inhomogeneity is 4. The homogeneous
half-plane is taken again as the Oth order approximation. The first order eigenstrains are
easily obtained as the following:

E(I’I = 8(1,2 = &y, E(I)Z = 09 (18)

for biaxial tension loading. The eigenstrains are obtained through

- X2

Xt

Fig. 1. An inhomogeneity near a surface.
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Fig. 2(a). Stress distributions along v, = 0 with & = 1.5 (dushed line is ¢}, and solid one is 6},).
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Fig. 2(b}. Stress distributions along x; = 0 with # = 3.0 {dashed linc is o}, and solid onc is o},).

By = - " &) (14)

provided that the Poisson’s ratios are the same in the homogeneity and matrix.

It is obvious that Green's function used in the integration [eqn (8)] is for a half-plane
only. For the sake of completeness, the Green's function is listed in the Appendix of the
present paper. Stress distributions for the biaxial case are shown in Fig. 2. It is shown that
the Eshelby solution for an inhomogeneity embedded in an infinite space can be used as
long as the inhomogeneity is bengath the free surface at roughly twice its radius. Another
fact revealed by this calculation is that there is a high tangential stress at the free surface
when the inhomogeneity is close to the free surface, This result indicates that fracture failure
may first occur at the free surface for a soft inhomogeneity near the surface. On the other
hand, the fracture may be obsecrved at the interface of the soft inhomogeneity and the
matrix when the inhomogeneity is deeply embedded in the matrix.

4. BOUNDARY CONDITIONS AND MIXED BOUNDARY VALUE PROBLEMS

Beside the perturbation of the governing equations in the inhomogeneity, boundary
conditions are also required. It is easy to develop solutions for the stress prescribed condition
as:
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t=t" on S, (19a)

and for the displacement prescribed conditions as:
u=u" on S,. (19b)

The higher order prescribed data are set to zero.

Additional care must be taken when prescribing the boundary conditions for the mixed
boundary value problem [see Erdogan (1978)]. It will be noted that the higher order
boundary conditions also depend on the previous order solutions. The tractions and dis-
placements in this case must be expanded as infinite series:

t=t"+/t'+--- and u=ul+fu'+---
where t° and u® are known, while t' and u' are to be determined from a Oth order solution.
In order to clearly present this procedure, the case of a rigid indeater pressed on a semi-
infinite plane with a near surface inhomogeneity is considered (as shown in Fig. 3).
By assuming the Hertzian contact area ¢ » d (inhomogeneity size), the Oth order

boundary conditions are given as:

t° = p., u" =ule,. (20

0™ Order

T I v YV Yy,

X

P Order and 0** Order

vl

Fig. 3. An inhomogeneity near a contacted region.
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They are uniform in the x-direction. The stress and strain tields neur the surface are [see

Johnson (1983)]:

=U:=[’- T, =0.=0. =1 (2])

and

(22

£y Lo
Ap
N - e, (23)
32 4
¢ l]: O
forv = v*
From these cigenstrains, the corresponding displacement disturbance at 2 = 0 (barred

variables) is given, egn (8a), as:

di(x) = a;(x)

Q) A L7 . . ’ .’
J ( ;kmu"nm(x )('lf,l( (\v X ) d\
1

- C'/ll(mn!:r(r)m J (;//‘k(x‘ X’ ) dx" (24)
2

il

This is a displacement that is not allowed at the contact surtice due to the presence of
the rigid indenter. Thus, a negative distribution of the above displucement at 2 = 0is added.
The correction to the surfuce traction at this order is given by the tolowing integral
equation :

1 . - -
fl)’('\)d.\'= nk '1_""' (25)

[ X—§ 21 —vdy Oox

where ¢ » L>» d is properly selected. The stress traction at = = 0 disturbed by the inhomo-
geneity is expected as in Fig. 3.

The stress or displacement ficlds of the first order consists of two parts. The first part
is computed directly from eqn (8). The second part is obtained by considering p'(x) acting
at = = 0 with a homogencous half plane.

The exact formulation of this problem is complicated because of the interaction between
the inhomogencity and stress distribution within the contact arca. Miller and Keer (1983)
and Bryant er af. (1984) formulated the problem of two-dimensional contact of an indenter
interacting with a near surface inhomogencity. They provided numerical results for the
interaction between a contact indenter at the surfuce and a near surface circular void or
rigid inclusion beneath the indenter. More generally shaped inhomogencities are too difficult
to be solved by an exact formulation. On the contrary. the perturbation approach can
treat arbitrarily shaped inhomogencitics, even for the three-dimensional case. The present
perturbation scheme has also decoupled the deternunation of the equivalent eigenstrain of
the inhomogencity and surface traction distribution.
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5. OTHER APPLICATIONS VIA THE MODULUS PERTURBATION

The modulus perturbation approach is not limited to the inhomogeneity problem
discussed above. Next. two problems are given, which are extensions of the perturbation
approach.

Elastic fields in an elastic material of variable modulus

When the elastic modulus is a function of spatial co-ordinates, the problem becomes
dramatically more complicated compared to the homogeneous case. For example, Delale
and Erdogan (1983) considered a crack in an elastic medium with its modulus changing
exponentially as a function of a co-ordinate. It is noted that the perturbation solution can
be obtained for this kind of problem under some restrictions.

The Oth order solution is still taken as the solution in the homogeneous body. while
the first order equation is written as:

oy = Cluei+ Clu(X)eg, (26)

where C'(x) is a known function. The remainder of the formulation is the same as in
Section 2 and no special treatment is required for this problem.

A systematic formulation of fracture analysis of nonhomogeneous materials via the
moduli perturbation approach was recently provided by Gao (1991). He emphasized the
stress intensitiy factor of a crack in the nonhomogeneous elastic medium. Combined with
his published works, he has extensively studied the perturbation stress intensity fuctors of
a crack in the elastic medium with C(x).

Nonlinear elastic and elasto-plastic analysis for high strain hardening materials

As a further extension of the modulus perturbation approach, a nonlincar clastic body
[Fig. 4(a)] under a certain loading is considered here. In Fig. 4(a), curve (1) shows a
reference matertal which will be used to construct the Oth order solution. Curve (2) gives
the real stress-strain relation. The Oth order solution is the linear elastic solution for a
configuration under consideration, while the first order correction is

alll = CtO/klEl(ll + Ctl/kl(ol/)‘:l(()l' (27)
If J, deformation theory is applied, then one may have C' = C'(J,), where
Jy = %sl/sl/' Sy =0 — §akk51'j- (28)

Furthermore an elasto—plastic analysis with a stress-strain curve as in Fig. 4(b) can
be treated by the sume procedure, although an extra calculation in the 1st order formulation
is required to determine the plastic zone and the region where the eigenstrain is prescribed.
[t is noted that there is (are) some subdomain(s) Q where the effective stress exceeds the
yield limit o,,. The determination of Q is achieved according to a yield criterion, e.g. von
Mises, as:

y.0.0 2
38,8 Z O, (29)

where g, is the yicld stress in uniaxial tension.

With the above eigenstrain and Q known, one obtains the first order stress and strain
through the integration equation (8). Finally the plastic zone €, of the Ist order where the
total effective stress exceeds g,, is determined by

Wsh+ 3G +Ss) = a).. (30)

It is obvious that higher order perturbations will further correct Q and the plastic
zone Q..
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Fig. 4(a). A nonlinear elastic material.
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Fig. 4(b). An clasto plastic material,

6. CONCLUDING REMARKS

We have presented a modulus perturbation scheme for determining the displacement
and stress ficlds disturbed by inhomogeneities. Although FEM or BEM can handle these
types of inhomogeneity problems, the present perturbation procedure still shows its advan-
tages by the simplicity and analytical form of the results. By using the modulus perturbation
approach, some insight is obtained for many difficult inhomogencity problems which may
be very troublesome from both the computational complexity and the amount of CPU time
required in FEM and BEM numerical procedures. For instance, the mixed boundary
problem discussed in Section 4, the interaction between a near surface inhomogeneity and
surfuce traction distribution, cun be quite costly in CPU time [see a similar calculation on the
clastic-plastic contact analysis by Komvopoulos (1989)]. Under the present perturbation
procedure, an inhomogeneity problem is converted to a series of inclusion problems.
The inhomogencities other than those of cllipsoidal shape can be considered through the
perturbation scheme. Extensions of the application of the modulus perturbation have been
made for two examples. The clastic -plastic analysis through the modulus perturbation
scheme is easy to be applied to engineering applications.

The perturbation procedure may also be helpful for numerical calculations cven for
the case when the modulus difference of the inhomogeneity/matrix system is out of the
perturbation range. For instance, in an inverse problem [see Gao and Mura (1989)] the
initial guess of the solution is vital for the convergence of the numerical iteration scheme.
The perturbation solution may provide a reasonable initial guess for the iteration.

[t should also be emphasized that there arc some limitations on the application of the
perturbation scheme. First, the present approach is based on the assumption that AC,,, is
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small compared to C,,,. A quantitative restriction is shown in the first example in Section
3. where the exact solution acts as a benchmark. The applicable range of the perturbation
solution also depends on the problems and parameters under consideration. Gao (1991)
showed that the perturbation solution of stress intensity factor of a Mode I crack sur-
rounded by inhomogeneity is in good agreement with the exact solution even though
Au/p = 2. However, for those problems where AC,,, is small, this assumption may not
prove too limiting for engineering applications.

Since the proposed modulus perturbation scheme is a regular perturbation procedure.
the approximated solution may lose some important information present in the original
problem. For example. as interface crack tip singularity cannot be derived from a Oth order
solution which is chosen in a homogeneous space. The singularity at the interface crack tip
is a special characteristic of the original problem which must appear in the Oth order
configuration. This example illustrates that the application of the perturbation approach
should be carried out with great care in terms of the original problem and application.
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APPENDIX: HALF-PLANE GREEN FUNCTION

The Green's function for a half plane can be written as:

G x. X'} = GL{X. X} +GL{x.X), (Al

where G} (x.x’) corresponds to the whole-plane Green function and G5, (x, x’) is called the complementary part
of the hall-plane Green function. They are given by

' f,f,
Gl = K| B=4)inrg, - 2 (A2)

and

(3 —dv)RI=2ck 4c.€Rf)

GY, =l<d(-[8(l-V)’-(3—4V)]'ﬂ R+ R: R*
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-4y » 4cx R
G5, = K,,(G dv)ryr. . cXR,r, —a—w(l —Zv)()),

R’ RY
I—dirr. iR
G, = /\j,((-~-»k‘:it' - L‘E“»’: FETT—— —2\-;0>.

R R (A3)

. . 3—4dv)ri+ et deird
Gi: = K| =Bl =) —(3—34)]ln R+ ———5—— —~ :

where

r=x-x. R, =x,+x], R,=x,—x,
r={rr)'. R=(RRI c¢=x,.

R. l
X=X, @) = arctan (R—.>. K,/ = m
, —

The first order displacement disturbance caused by the inhomogeneity is obtained by using the above Green
function and the eigenstrain formulation as follows :

ul(x) = —J- Bt (G 1%, X7) + G, (x, X)) dX. (Ad4)
aQ
Furthermore, the stress disturbance is obtained by taking the derivatives with respect to x, i.c.

a! = —j b (X ) C Rt (X ) X" = C e (AS)
8]

where

a J
o [ U , v ,
Zm C“"(J-\", G,,.(K.x )+ (7"‘, G“(‘-‘ ))

These cquations can also be divided into a whole plane part and a complementary one which is not singular
in the domain €2, These two pitrts are given as:

. K, . . . 21,1,
o = Py (1 =20)(r 8, +r,00—rd,) + R (A6)
and
" O3+ =2v)  2RURT+3e8) —48r3 (1 =2v)  16¢XR,r}
i o= — K, B St d R =)
. ) (1=2v) 2087 = =2ex 4288 (1 =2v)]  16cER;
SI:l =—I\-r:<—‘R’E"‘+ R ' + R .
. I =2 AR (ri+20%) = 2eri #2531 =2v)]  16¢XR, r}
E:"' = —A’< R! + : R.a + R° .

. (1 =2) =R = 28R, (1 =2v)]  l6eird

By = ok (BEEOU=20 | AQe+ R, =20RIA =20)] 160K, r}
: R R
. (3 =2v) 2[ri =207 =48 = 28R, (1 - 2v)]  16¢IR}
3 = N S s —
i A-’.( R + Iy + G (A7)

where K, = 14a(] —v).

For a general distribution of cigenstrain, a special treatment on stress evaluation from cgn (A5) is needed
(Brebbia er al., 1983, Chapter 6). In the second example of Scction 3, the uniformly distributed first order
cigenstrain can simplify the present numerical calculation procedure as:

oy, = —L(X:,.(x. X))+ ES (X, X)) C hmntm (X)) dX". (A8)

Note that the complementary part of the Green function in the above integral is not singular at x° = x. Thus, the
sccond part of eqn (A8) can be evaluated by using a conventional numerical integration technique. The first part
of eqn (AR) is just the Eshelby solution for an inclusion embedded in an infinite matrix which was obtained in a
closed form expression.



