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Abstrllct-The prt:~nt paper reconsiders the inhomogeneity problem via an elastic modulus per­
turbation approach. By using the eigenstrain concept. the inhomogeneity problem is converted to
a series of inclusion problems in the present modulus perturbation procedure. A homogeneous state
is choscn as refaence state or the Oth order solution. Some ell tensions of the modulus perturbation
approach by e~ample are also discussed in the paper.

l. INTRODUCTION

The investigation of the lkld of an inhomogeneity embedded in a matrix has long been an
attra\:tive subje\:t in l1lkromechanics and the mechanics of composites. However. the defi­
nitions of the indusion and the inhomogeneity have not been unified. In the present
investigation the terminology of Mura (1982) for characterizing both inclusion and inhomo­
geneity will be 'H.lopted. The inclusion is defined as a subdomain having eigenstrains
prescribed. while the inhomogeneity is defined as a subdomain with a prescribed modulus
that is different from the remainder of the materi,,!. It is noted that the inhomogeneity can
be equivalent to an indusion with a proper eigenstrain th.tt depends on the external loading
and geometry of the body. Unfortunately. the equiv.tlent eigenstrain of an inhomogeneity
is too dillkult to be obt.tincd for configurations othcr th'lll that of " single ellipsoidal
inhomogeneity embedded in an infinite m'ltrix. as solved by Eshelby (1957). Besides the
Eshclby sohttion. there are onfy a few other configurations that have analytical solutions.
For example. the interaction of two inhomogeneities in an infinite matrix was studied by
Moschovidis and Mura (1975). and a semi-spherical inhomogeneity near a free surface has
recently been provided by Tsuchida el al. (1990). Generally, solutions of this type are too
complicated to be used in further applications.

As another branch of micromechanics. the study of the inclusion problem with pre­
scribed eigenstrains has attracted many researchers. Among others. Sankaran and Laird
(1976) developed a cuboidal inclusion solution. and Seo and Mura (1979) solved the case
of an inclusion near the free surface of a half-sp'lce. A direct engineering application of the
inclusion solution is found in metallurgical research. such as in studies of phase trans­
formation. where the eigenstr~lin is known. Also. it is expected that the inclusion solutions
may be used for the study of inhomogeneities by the equivalent inclusion method (Mura.
1l)~2. Section 22).

In the prescnt p'lper. the inhomogeneity problem is formulated via the elastic modulus
perturb"tion approach. It is noted th'lt this procedure (Section 2) turns the inhomogeneity
problem to an inclusion problem. The Oth order solution is obtained in a properly selected
configuration. S.IY a homogeneous medium. which is chosen to be as simple as possible.
The higher order solutions fI ~ I show the general properties of an inclusion problem. The
corresponding equivalent eigenstrains for fI ~ I are obtained from the solutions of previous
orders. Through the present perturbation approach. the existing inclusion solutions (Mura,
19M2) will have found a new class of ;tpplications. which brings additional importance to
these solutions. Meanwhile. as it will be pointed out. the perturbation procedure itself.
altlhough greatly simplifying the inhomogeneity problem. restricts the solution somewhat.
It is easy to see that the difference between CII", (matrix modulus) and Cn1<t (inhomogeneity
modulus) is required to be small compared to e'I"1 itself. Other remarks on the advantages
and disadvantages of the procedure will be made in the last section of the paper.
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A similar technique had been used by Walpole (1967) to tre-..lt an inclusion in an aniso­
tropic medium. He used an isotropic solution as the reference state. the Oth order solution.
which was obtained by Eshelby (1957). Other related works. such as Gao (1991). will be
reviewed in the following sections.

2. PERTURBATION PROCEDURE

Consider an elastic medium D with elastic modulus Co, in which there is a subdomain
o contained in D with a different modulus C*, We call 0 the domain of the inhomogeneity
and D-O as the domain of the matrix:, One may write Hooke's law in the matrix: as,

( la)

and in the inhomogeneity as.

(I b)

The perturbation is carried out as follows:

(2)

where the parameter/may be chosen by the ratio:

where Cn and C· :Ire the represent:ltive components in C,I:kl and C,',kt respectively.
All the stress and strain fields arc expanded as follows:

(3a. 3b)

By identifying terms with the same power oft: the first two order :lpproxim:ltions in
o are:

(4:1)

0U), 1st order solution:

(4b)

In general, one has:

aU"). nth order solution. n > I :

(4c)

On the other hand, in D-O,

(5)

By using the eigenstrain concept (M ura, 1982), eqn (4b) may be rewritten as:

(6)

where f.~; is the so-called eigenstrain, which is obtained by equating (4b) to (6).



Inhomogeneity problem 2585

(7)

In terms of the eigenstrain and Green's function of the corresponding domain, the first
order approximation is expressed as,

u} (x) =1C)I"",E~(X')Gij;(X' x') d'\"' (8a)

Ej~(X) = 2~ r C~Im"E~:(X')(~O G,k./(X. x') + ~o Gjk./(x, X'»)~X" (8b)1 ~~ ~~

where ( ).j = B( )/ox;.
Green's function Gij(x. x') in the above equations is the displacement in the X j direction

at point x when the unit point force is acting in the direction xj at x'. The integrals in eqn
(8b) do not exist in the sense of Riemann integrals. A special treatment is needed (see
Appendix) when a numerical calculation is carried out.

It is seen that the higher order approximations can be performed in the same fashion.
Although in principle the higher order (n ;;?; I) can be obtained, most practical applications
only need the first order modification. (n the following section, we will mention only the
first order formulation most of thc time.

Comhining eljn (7) with (Xa). thc pcrturhation of the displacement cljuation (8a) may
hc rewritten as:

(9a)

(9b)

Expression (9a) m.IY be obtained by omitting the eigenstrain concept (Gao, 1991). (n
order to connect the inhomogeneity and inclusion problems, the present analysis shall
mention and c'llculate the eigenstrain as necessary in the following sections.

3. EXAMPLES

In order to have a quantitative sense of the accuracy of the perturbation approximation,
the Eshelby (1957) inclusion solution is re-examined. An infinitely long solid cylindrical
inhomogeneity is embedded in an isotropic infinite matrix. The far field is loaded by pure
shear stress, (1~~. By using the equivalent inclusion concept (Mura, 1982, Chapter II), the
disturbance due to the inhomogeneity can be expressed as:

( 10)

where (1'1 Hnd f.'l are the disturbed lields, Hnd the I:~ is the so-called eigenstrain.
From the Eshelby solution. the stresses in the inhomogeneity are known to be uniform.

The only non-zero component under sheHr is (11~' The exact solution of the eigenstrain is:

-(6/1)f.~~

r.r~(m"1I = i(~il)S,~-,-;+/~' (11 )

where 6/1 = II· - II. The constant S 1 ~ I ~ for the ellipsoidal inclusion was given by Eshelby
(1957).

On the other hand, an approximated solution can be obtained from the perturbation
procedure given in Scction 2 above. The Oth order solution is taken as the uniform shear
(1~ ~ = 2Jlf.~~. (n the homogeneity. the first order stress and strain are related as:
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( 12)

where

I-I' I' I-\'* \'*
0 ._. 0

1-21' 1-2v 1-21'* 1-2\'*

CO = 2Jl I' I-v C* = 2JI* \'* I-\'* ( 13)

1-2v 1-2v
0

1-21'* 1-21'*
0

0 0 0 0

and

-v

I-v

o

0)o .
I

For simplicity, I' = 1'* is taken in the following formulation. The eigenstrain for the first
order is obtained by substituting the above formulae into cqn (7) :

(14)

For the case of pure shear, eqn (14) is the first term of the Taylor expansion of cqn (II).
By substituting the eigenstrain into eqn (8b), the first order correction on the strain is
obtained. Having noted that the integral (Bb) with a uniform eigcnstrain has been carried
out by Eshelby (1957), el~ can be expressed in terms of the so-called Eshelby tensor S as:

( 15)

In most cases, the Ist order solution provides a good approximation. The error of the
present approximation can be obtained by comparing (15) with the exact Eshclby solution.

With the Eshelby tensor the discussion can be extended as follows. The next order
approximation is read as:

. z' _ !i.JI. 1 _
E. 11 - .---- f' 11 -

Jl (
!i.JI) !i.JI ()., ---_5 I ZI Z Jl Jl r. I Z ' ,. •

By following the same procedure, the nth order eigenstrain is obtained as:
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( 16)

where n > I.
It is seen that the sum of all the orders of eigenstrains converges to the exact solution.

eqn (II). in the range of convergence. i.e.

( 17)

if

A numerical range of 611 can be reached if the shape of the inhomogeneity and Poisson's
ratio are given. For a circular cylinder with v = 0.25. the above condition is read as:

which will guarantee that the series (17) will converge to the exact solution (II).
Information can be derived from this example concerning the error of the perturbation

approximation at the first and higher orders. Usually. only the first order can be easily
ohtained. while the higher order apprm:il11;ltions become more complicated. It is clear that
the perturb;ltion solution does not show the extra complexity when the inhomogeneity is
not of elliptical shape. The ellcct of the shape on the stress ;Illd strain fields may be discussed
by using this approximation scheme. It is noted that this benefit. gained through the
perturbation procedure. is ;It the expense of the restriction that 16CI = IC· - CI is small.

As another eX;lmple without a closed form solution. consider an inhomogeneity near
a free surface. ;IS shown in Fig. I. where the inhomogeneity has a radius of I and the
distance between free surface and the center of the inhomogeneity is h. The homogeneous
half-plane is taken again as the Oth order approximation. The first order eigenstrains are
easily obtained as the following:

( 18)

for biaxial tension loading. The eigenstrains are obtained through

o
------"T"""----.,.------t~ Xl

h

"'I

Fig. I. An inhomogeneity near a surface.
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(14)

provided that the Poisson's ratios are the same in the homogeneity and matrix.
It is obvious that Green's function used in the integration [eqn (8)] is for a half-plane

only. For the sake of completeness, the Green's function is listed in the Appendix of the
present paper. Stress distributions for the biaxial case are shown in Fig. 2. It is shown that
the EsheIby solution for an inhomogeneity embedded in an infinite space can be used as
long as the inhomogeneity is beneath the free surface at roughly twice its radius. Another
fact revealed by this calculation is that there is a high tangential stress at the free surface
when the inhomogeneity is close to the free surface. This result indicates that fracture failure
may first occur at the free surface for a soft inhomogeneity near the surface. On the other
hand. the fracture may be observed at the interface of the soft inhomogeneity and the
matrix when the inhomogeneity is deeply embedded in the matrix.

4. BOUNDARY CONDITIONS AND MIXED BOUNDARY VALUE PROBLEMS

Beside the perturbation of the governing equations in the inhomogeneity, boundary
conditions are also required. It is easy to develop solutions for the stress prescribed condition
as:
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and for the displacement prescribed conditions as:
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(19a)

(l9b)

The higher order prescribed data are set to zero.
Additional care must be taken when prescribing the boundary conditions for the mixed

boundary value problem [see Erdogan (1978)]. It will be noted that the higher order
boundary conditions also depend on the previous order solutions. The tractions and dis­
placements in this case must be expanded as infinite series:

where to and UO are known, while t I and u I are to be determined from a Oth order solution.
In order to clearly present this procedure, the case of a rigid indenter pressed on a semi­
infinite plane with a near surface inhomogeneity is considered (as shown in Fig. 3).

By assuming the Hertzian contact area c» d (inhomogeneity size), the Oth order
boundary conditions are given as:

(20)

Q'h Onlcr

x

•
z

P' Order and Q'h Order

•
z

Fig. 3. An inhomogeneity near a contacted region.
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They are uniform in the x-din:ction. The stress and strain lidds ncar tht: surfa(e arc [sec
Johnson ( 1985)I :

(21 )

and

(22)

The mrresponding eigenstrain is obtained rrom tht: equation

(2:1)

I'llI' \" = \.....

From these eigenstrains. the corresponding displaccment disturham:e at; = () (harred
variahlcs) is given, eqn (Sa), as:

- '() - I () iC' (J • ,. ( ")(' (. ') I .'II, X = II, X = ,b,... /. ..." X 'I/.k X.X (X
1/

(24)

This is a displacement that is not allowed at the contact surrace due to the presel1l:e of
the rigid indenter. Thus. a negative distribution of the above displacement at == 0 is added.
The correction to the surface traction at this order is given hy the rollowing integral
equation:

(25)

where c » L» cI is properly selected. The stress traction at == 0 disturbed by the inhomo­
geneity is expected as in Fig. 3.

The stress or displacement ticlds of the tirst order consists of two parts. The first part
is computed directly from eqn (8). The second part is obtained by considering pi (x) acting
.It == 0 with a homogeneous half plane.

The exact formulation of this prohlem is complicated hecause of the interaction between
the inhomogeneity and strc.:ss distrihution within the contact area. Miller and Kcer (1983)
and Bryant ('{ al. (19X4) formulated the prohlem of two-dimensional contact of an indenter
interacting with a near surface inhomogeneity. They provided numerical results ror the
interaction hetween a contact indenter at the surf,lce and a IH:ar surrace circular void or
rigid inclusion heneath the indenter. More generally shaped inhomogeneities are too dilllcult
to he solved hy an exact formulation. On the contrary. the perturhation approach can
treat arhitrarily shaped inhomogeneities. even for the three-dimensional case. The present
perturhation scheme has also decouplcd the determination of the equivalent eigenstrain of
the inhomogeneity and surface tral.:tion distrihution.



Inhomogeneity problem 2591

5. OTHER APPLICATIONS VIA THE MODULUS PERTURBATION

The modulus perturbation approach is not limited to the inhomogeneity problem
discussed above. Next. two problems are given. which are extensions of the perturbation
approach.

Elastic fields in an elastic material of rariable modulus
When the elastic modulus is a function of spatial co-ordinates. the problem becomes

dramatically more complicated compared to the homogeneous case. For example. Delale
and Erdogan (1983) considered a crack in an elastic medium with its modulus changing
exponentially as a function of a co-ordinate. It is noted that the perturbation solution can
be obtained for this kind of problem under some restrictions.

The Oth order solution is still taken as the solution in the homogeneous body. while
the first order equation is written as:

(26)

where C I (x) is a known function. The remainder of the formulation is the same as in
Section 2 and no special treatment is required for this problem.

A systematic formulation of fracture analysis of nonhomogeneous m'lterials via the
moduli perturbation approach was recently provided by Gao (1991). He emphasized the
stress intensitiy 1~lctor of a cruck in the nonhomogeneous elastic medium. Combined with
his puhlished works. he has elttensively studied the perturbation stress intensity factors of
.1 crack in the elastic medium with C(x).

Nonlincar deIStic amI daste"'plastic analysis for high strain hardcning materials
As a further elttension of the modulus perturbation approach. a nonline'lr elastic body

[fig. 4(a)1 under a certain loading is considered here. (n Fig. 4(a). curve (I) shows a
reference m'lterial which will be used to construct the Oth order solution. Curve (2) gives
the re.t1 stress-strain relution. The Oth order solution is the linear clastic solution for a
contigurution under consideration. while the first order correction is

(27)

(f 12 deformation theory is applied. then one may have C I = C I (12). where

(28)

Furthermore an e1asto-plastic analysis with a stress-strain curve as in Fig. 4(b) can
be treated by the same procedure. although an extra calculation in the 1st order formulation
is required to determine the plastic zone and the region where the eigenstrain is prescribed.
It is noted that there is (are) some subdomain(s) n where the effective stress exceeds the
yield limit (1,.,. The determination of n is achieved according to a yield criterion. e.g. von
Mises. as:

(29)

where (1 ... is the yield stress in uniaxial tension.
With the above eigenstrain und n known. one obtains the first order stress and strain

through the integration equation (8). Finally the plastic zone~ of the 1st order where the
totul effective stress exceeds (1.•.• is determined by

J( 0 f 1)( 0 f I) 22 51} + S,j 5 1j + 5 1j ~ (1).•• (30)

It is obvious that higher order perturbations will further correct n and the plastic
zone nl"
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Fig. 4th). An c1asto pl;lstic material.

6. CONCLUDING REMARKS

We have presented a modulus perturbation scheme for determining the displacement
and stress fidds disturbed by inhomogeneities. Although FEM or BEM can handle these
types of inhomogeneity probkms. the present perturbation procedure still shows its advan­
tages by the simplicity and analytical form of the results. By using the modulus perturbation
approach, some insight is obtained for m.lny difficult inhomogeneity problems which may
be very troublesome from both the computational complexity and the amount of CPU time
required in FEM and BEM numerical procedures. For instance. the mixed boundary
problem discussed in Section 4. the intemction between a ncar surface inhomogeneity and
surface traction distribution. can be quite costly in CPU time [see a similar calculation on the
dastic-plastic contact analysis by Komvopoulos (1989)). Under the present perturbation
proceuure. an inhomogeneity problem is converted to a series of inclusion problems.
The inhomogeneities other than those of dlipsoidal shape can be consiuered through the
perturbation scheme. Extensions of the application of the mouulus perturbation have been
made for two examples. The elastie··plastic .Inalysis through the modulus perturbation
scheme is easy to be applied to engineering .tpplications.

The perturbation procedure m:IY also be helpful for numerical c:llculations even for
the case when the modulus difference of the inhomogeneity/matrix system is out of the
perturbation r.1I1ge. For instance. in:1I1 inverse problem [see Gao and Mum (1989)] the
initial guess of the solution is vital for the convergence of the numeric.1I iteration scheme.
The perturbation solution may provide a reasonahle initial guess for the iteration.

It should also be emphasized that there arc some limitations on the application of the
perturbation scheme. First. the present approach is baseu on the assumption that t1C/lkf is
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small compared to C,lkl• A quantitative restriction is shown in the first example in Section
3. where the exact solution acts as a benchmark. The applicable range of the perturbation
solution also depends on the problems and parameters under consideration. Gao (1991)
showed that the perturbation solution of stress intensity factor of a Mode III crack sur­
rounded by inhomogeneity is in good agreement with the exact solution even though
AJ,l/IJ ~ 2. However. for those problems where AC;JlcI is small. this assumption may not
prove too limiting for engineering applications.

Since the proposed modulus perturbation scheme is a regular perturbation procedure.
the approximated solution may lose some important information present in the origin.1I
problem. For example. as interface crack tip singularity cannot be derived from a Oth order
solution which is chosen in a homogeneous space. The singularity at the interface crack tip
is a special characteristic of the original problem which must appear in the Oth order
configuration. This example illustrates that the application of the perturbation approach
should be carried out with great care in terms of the original problem and application.
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APPENDIX: IIALF-PLANE GREEN FUNCTION

The Green's function for a half plane C;tn be wrillen as:

(AI)

where G~I(".lt') corresponds to the whole-plane Green function and G~J(x. x') is called the complementary part
of Ihe half-plane Green fun.:tion. They ;lfe given by

(A2)

and
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where

H. F":-I el ul.

(
0-4,.)r'f' 4dR,f. )

G~. = KJ • - +'--.-- -4(I-v)(1 -2,')t! .
- R- R

, . (O-.hlf'f' ·k.iR,f, ~ )G. = A --.----- - ---.. - +411 - vI( 1- ")1/., "R: R 4 - •

f,=X,-X;. R,=x,+x·,. R,=x,-x'>

f = (f,f,)':. R = (R,R,)I2. C = X, •

(A3)

.i = x',. 1/ = arctan(~J I
K I = 0:---;--

, 81t/1(1-,')

The tirst order displacement disturbance c.lused by the inhomogeneity is obtained by using the above Green
function and the eigenstrain formulation as follows:

(M)

Furthermore. the stress disturbance is obtained by taking the derivatives with respect to x. i.e.

(AS)

where

( " cJ )1:,,.,, C~,., 'f'-G,..(x.x')+ ,-G.. (x.x') .
(X

tf
(IX,

These equations c.ln alSi' be dl\'lded inlo a whole pbne part and a complementary one which is not singular
in lhe dOl1l;lin U. These two parts are given as'

and

,_, = -K (1i'+(')(1-2 .. ) + 2_~,.(R +3ci')-4id(I-2.. ) _ !~ci'~,.'~)
-II' . R' R R" '

..-' = -Kf.(- f.l.=:2~ + 2(.i'-c'_=_2~i+2.iR,(1-2")J +~C.iRi)
-,,, '. R' R' R"'

. (Ii' + 3c)( 1- 2,') 2(R, (ri + 2c') - 2cri + 2.id(l -2v)] 16dR'd)
r~" -A, - R' +. R' + R" .

r~" = _ K,f'«~i-~~) _ ~t~-·i~_+_6c.~~.2~~,(l-2v)1 + 16~.~1).

r"" = -K,«.Li..~~l,I-=_~"~ + ~L~(~i+fi)R'R~_~i..~.U!-=_:!"!J _ !6c~~,rl).

r'", = -K,f'( ~~!-;/.':) + ~1I'..L=':.~·~-:~~·~;2.iRl(l-2")J + 16~i"Ri).

(1\6)

(A7)

where K, = L41t( I - .. ).
Fl'r a I:encral distribution of eigenstrain. a slX'\:ial tre'ltment on slress ev'lluation from cqn (AS) is n~"Cded

(Brebbia el ul.• 1983. Chapter 6). In the second example of Section 3, the uniformly distributed first order
cigenstrain can simplify the prescnt numerical calculation procedure as:

(A8)

Notc that the complementary part of the Green function in the above integral is not singular at x' = x. Thus, the
second part of eqn (A8) can be evaluated by using a conventional numerical integration technique. The first part
of eqn (A8) is just the Eshelby solution for an inclusion embedded in an infinite matrix which was obtained in a
closed form expression.


